
Communication

Kinetic Resolution of Axially Chiral 2,2'-Dihydroxy-1,1'-biaryls by Palladium-Catalyzed Alcoholysis

Hiroshi Aoyama, Makoto Tokunaga, Junya Kiyosu, Tetsuo Iwasawa, Yasushi Obora, and Yasushi Tsuji

J. Am. Chem. Soc., 2005, 127 (30), 10474-10475• DOI: 10.1021/ja051750h • Publication Date (Web): 08 July 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

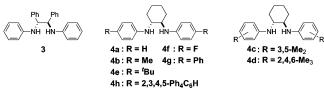
Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 6 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 07/08/2005

Kinetic Resolution of Axially Chiral 2,2'-Dihydroxy-1,1'-biaryls by Palladium-Catalyzed Alcoholysis


Hiroshi Aoyama, Makoto Tokunaga,* Junya Kiyosu, Tetsuo Iwasawa, Yasushi Obora, and Yasushi Tsuji*

Catalysis Research Center and Division of Chemistry, Graduate School of Science, Hokkaido University, SORST and CREST, Japan Science and Technology Corporation (JST), Sapporo 001-0021, Japan

Received March 19, 2005; E-mail: tokunaga@cat.hokudai.ac.jp

Axially chiral biaryls are important modules in synthetic,^{1a} pharmaceutical,^{1b} material,^{1c} and supramolecular^{1d} chemistry. Especially, optically active 2,2'-dihydroxy-1,1'-biaryls have received primary attention because they have been utilized not only as ligands but also as precursors for phosphine ligands in catalytic asymmetric reactions.^{1a} The success of complexes of 2,2'-disubstituted 1,1'-binaphthyls, in particular, BINOL and BINAP, in giving high enantioselectivities in numerous catalytic reactions has encouraged the synthesis of several related ligands.

The optically active 2,2'-dihydroxy-1,1'-biaryls have been provided by conventional optical resolution or chiral pool methods using stoichiometric chiral sources² because they cannot be constructed by the typical catalytic asymmetric reactions, including hydrogenation and aldol reaction. The enantioselective oxidative coupling of 2-naphthols is the only way to access them so far. However, this method is effective only for the building of optically active BINOL and its analogues.³ The efficient synthesis of optically active 1,1'-bi-2-phenols has not been attained due to the low reactivity of phenols. Thus, the development of a novel methodology for these classes of compounds is an interesting target in asymmetric catalysis.

We recently reported a catalytic hydrolysis of alkenyl ethers and esters and their application to hydrolytic kinetic resolution⁴ of some racemic vinyl ethers.⁵ Although various metal complexes, such as Pd^{II}, Pt^{II}, Hg^{II}, Cu^{II}, Co^{III}, Ru^{II}, and Sc^{III}, showed activity in the hydrolysis of vinyl ethers, only (salen)Co complexes catalyzed the asymmetric hydrolysis, giving moderate selectivity ($k_{rel} = 10$). Herein, we report a Pd-catalyzed kinetic resolution of vinyl ethers of axially chiral 2,2'-dihydroxy-1,1'-biaryls with high selectivity and generality. This is the first example for the efficient preparation of optically active 1,1'-bi-2-phenols by a catalytic system.

Our attempts started with the hydrolysis of BINOL vinyl ethers using (salen)Co and chiral ligands–Pd systems. The optimization study revealed that chiral secondary diamines 4/Pd-catalyzed methanolysis⁶ rather than hydrolysis gave favorable results. The kinetic resolution of racemic **1a** by Pd(OAc)₂ complexes was performed under the methanolysis condition (Table 1). A diamine ligand **4a** derived from (*R*,*R*)-1,2-cyclohexanediamine showed higher selectivity ($k_{rel} = 16.5$, entry 4) than that of another diamine ligand **3** ($k_{rel} = 7.2$, entry 3) and typical chiral ligands, such as BINAP ($k_{rel} = 1.3$, entry 1) and sparteine ($k_{rel} = 1.4$, entry 2). The selectivity was largely influenced by the position of substituents on the phenyl ring of **4**, the ligand **4b** having a methyl group at the **Table 1.** Kinetic Resolution of rac-**1a** Catalyzed by $Pd(OAc)_2$ Complexes with Various Kinds of (R,R)-Diamine^a

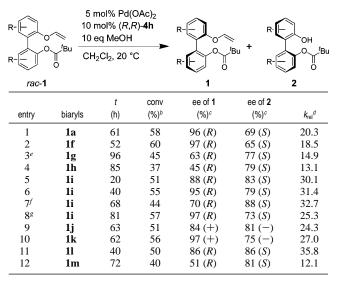
	10 mol	5 mol% Pd(OAc) ₂ 10 mol% ligand 10 eq MeOH CH ₂ Cl ₂ , 20 °C			+ OH OH O		
rac-	-1a		1a	2a			
		t	conv	ee of 1a	ee of 2a		
entry	ligand	(h)	(%) ^b	(%) ^c	(%) ^c	<i>k</i> _{rel} ^d	
1	(S)-BINAP	137	22	3	15	1.3	
2	(-)-sparteine	187	9	2	20	1.4	
3	3	18	43	50	64	7.2	
4	4a	62	43	61	81	16.5	
5	4b	109	40	54	81	16.0	
6	4c	107	19	16	68	5.8	
7	4d	46	41	2	3	1.1	
8	4e	111	11	11	88	14.7	
9	4f	42	41	56	79	13.8	
10	4g	61	35	45	84	18.3	
11	4h	61	58	96	69	20.3	

^{*a*} The reaction was carried out with 1 M solution of **1a**, 5 mol % of Pd(OAc)₂, 10 mol % of ligand, and 10 equiv of MeOH in CH₂Cl₂ at 20 °C. ^{*b*} Calculated from isolated yields of **1a** and **2a**. ^{*c*} Determined by HPLC. ^{*d*} From ref 10.

para-position exhibited higher k_{rel} value ($k_{rel} = 16.0$, entry 5) than *meta*- (**4c**, $k_{rel} = 5.8$, entry 6) and *ortho*- (**4d**, $k_{rel} = 1.1$, entry 7) positions. The steric and electronic effect of the *para*-substituent was investigated (H, Me, 'Bu, F, and Ph, entries 4, 5, 8, 9, and 10). The ligand **4g** bearing a phenyl group gave slightly higher selectivity ($k_{rel} = 18.3$, entry 10) than did **4a**, although other ligands showed lower selectivity. On the basis of this result, we introduced a 2,3,4,5-tetraphenylphenyl group,⁷ which exhibited unique steric effect in a Pd/pyridines-catalyzed aerobic oxidation of alcohols.⁸ Interestingly, **4h** afforded the best result with regard to selectivity ($k_{rel} = 20.3$) and reactivity (entry 11), while the typical bulky substituent (*t*-Bu) suffered from low reactivity (entry 8).

To explore the effect of bulkiness of the acyl group on BINOL, we examined a series of 2-acyloxy-2'-vinyloxy-1,1'-binaphthyls with Pd(OAc)₂-**4h** as catalyst (Table 2). The nonacylated compound **1b** showed almost no selectivity ($k_{rel} = 1.1$), although the reactivity was extremely high (entry 1). The k_{rel} value was increased by larger substituent as follows: acetyl (**1c**, $k_{rel} = 6.1$, entry 2), 1-heptanoyl (**1d**, $k_{rel} = 14.3$, entry 3), pivaloyl (**1a**, $k_{rel} = 20.3$, entry 4), and 1-adamantanoyl (**1e**, $k_{rel} = 28.7$, entry 5).

Then, we investigated the reaction with various kinds of racemic 2-pivaloyloxy-2'-vinyloxy-1,1'-binaphthyls and 1,1'-biphenyls using Pd(OAc)₂-**4h** as catalyst (Table 3). The reaction system was applicable to all examined substrates **1a** and **1f**-**m**, giving moderate to high selectivity ($k_{rel} = 12.1-35.8$). For example, the kinetic resolution of **1i** proceeded with k_{rel} values of about 30. The


Table 2. Kinetic Resolution of

2-Acyloxy-2'-vinyloxy-1,1'-binaphthyl 1 Catalyzed by Pd(OAc)2-4h Complex^a

(5 mol% Pd(OAc) ₂ 10 mol% (<i>R,R</i>)- 4h 10 eq MeOH		\mathbf{i}	`0´\ +	\square	ОН
OR		CH ₂ Cl ₂ , 20 °C	OR .			OR	
rac-1			ب ١			~	2
			t	conv	ee of 1	ee of 2	
entry	BINOL	R	(h)	(%) ^b	(%) ^c	(%) ^c	$k_{\rm rel}{}^d$
1	1b	Н	3	43	4	6	1.1
2	1c	COCH ₃	24	49	54	57	6.1
3	1d	$CO(n-C_6H_{13})$	63	44	61	77	14.3
4	1a	CO(t-Bu)	61	58	96	69	20.3
5	1e	CO(1-adamantyl)	42	56	96	77	28.7

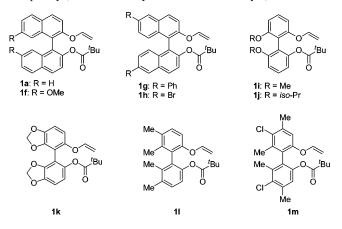
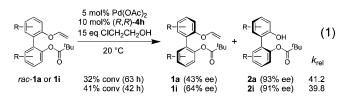

^a The reaction was carried out with 1 M solution of 1, 5 mol % of Pd(OAc)₂, 10 mol % of (R,R)-4h, and 10 equiv of MeOH in CH₂Cl₂ at 20 °C. ^b Calculated from isolated yields of 1 and 2. ^c Determined by HPLC. ^d From ref 10.

Table 3. Kinetic Resolution of Binaphthyls and Biphenyls Catalyzed by Pd(OAc)₂-4h Complex^a


^a The reaction was carried out with 1 M solution of 1, 5 mol % of Pd(OAc)₂, 10 mol % of (R,R)-4h, and 10 equiv of MeOH in CH₂Cl₂ at 20 °C. ^b Calculated from isolated yields of 1 and 2. ^c Determined by HPLC. ^d From ref 10. ^e At 0.7 M condition. ^f With 1 mol % of Pd(OAc)₂ and 2 mol % of (R,R)-4h used. ^g (R,R)-4a was used as ligand.

enantiomeric excess of 1i increased from 88 to 95% (20 h entry 5, and 40 h entry 6) with the increase in conversion. Even in the low catalyst loading condition (1 mol %), the selectivity was retained completely ($k_{rel} = 32.7$, entry 7, cf. $k_{rel} = 30.1$, entry 5). In addition,

the deference in reactivity and selectivity between ligand 4h and 4a was again observed (4a, $k_{rel} = 25.3$, entry 8, cf. entry 5). The highest $k_{\rm rel}$ value of 35.8 was observed with **11** (entry 11).

Although methanol was the best reagent in the present alcoholysis reaction in terms of reactivity, the $k_{\rm rel}$ value was improved to 41.2 (1a) and 39.8 (1i) by the use of 2-chloroethanol as reagent (eq 1).

The reaction appeared to take place in a similar manner with Pd-catalyzed transfer vinylation from vinyl ethers to alcohols,9 although our work is the first example of its asymmetric version. Actually, 1-dodecyl vinyl ether was isolated using 1-dodecanol as reagent, though the k_{rel} value was decreased to 3.6. We expect that the reaction is irreversible. In fact, the vinylation of 2a by ethyl vinyl ether using Pd(OAc)₂-4h did not proceed.9

In conclusion, we have achieved palladium-catalyzed kinetic resolution of various kinds of 2,2'-dihydroxy-1,1'-biaryls by alcoholysis reaction of their vinyl ethers. The reaction was applicable to 1,1'-bi-2-phenols as well as 1,1'-bi-2-naphthols with high selectivity.

Acknowledgment. This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 16033204, Reaction Control of Dynamic Complexes) from Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental procedures and full characterization of new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008-2022 and references therein. (b) Bringmann, G.; Breuning, M.; Tasler, S. Synthesis 1999, 525-558 and references therein. (c) Habaue, S.; Seko, T.; Okamoto, Y. Macromolecules **2003**, *36*, 2604–2608. (d) Telfer, S. G.; Kuroda, R. Coord. Chem. Rev. **2003**, *242*, 33–46.
- For example: (a) Lin, G.-Q.; Zhong, M. Tetrahedron Lett. **1997**, 38, 1087–1090. (b) Toda, F.; Tanaka, K.; Miyamoto, H.; Koshima, H.; Miyahara, I.; Hirotsu, K. J. Chem. Soc., Perkin Trans. 2 **1997**, 1877– 1885. (c) Delogu, G.; Fabbri, D.; Dettori, M. A.; Forni, A.; Casalone, G. *Tetrahedron: Asymmetry* **2000**, *11*, 4417–4427. (d) Meyers, A. I.; Nelson, T. D.; Moorlag, H.; Rawson, D. J.; Meier, A. Tetrahedron 2004, 60, 4459-4473. (e) Brunel, J. M. Chem. Rev. 2005, 105, 857-89
- (a) Irie, R.; Masutani, K.; Katsuki, T. Synlett 2000, 1433-1436. (b) Barhate, N. B.; Chen, C.-T. Org. Lett. 2002, 4, 2529-2532. (c) Luo, Z. Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. *Angew. Chem., Int. Ed.* **2002**, *41*, 4532–4535. (d) Li, X.; Hewgley, B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. *J. Org. Chem.* **2003**, *68*, 5500–5511. (e) Somei, H.; Asano, Y.; Yoshida, T.; Takizawa, S.; Yamataka, H.; Sasai, H. Tetrahedron Lett. 2004, 45, 1841-1844.
- (4) HKR of epoxides: (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. *Science* 1997, 277, 936–938. (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. *J. Am. Chem. Soc.* 2002, *124*, 1307–1315. (c) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 1360-1362.
- Aoyama, H.; Tokunaga, M.; Hiraiwa, S.; Shirogane, Y.; Obora, Y.; Tsuji, (5)
- Y. Org. Lett. 2004, 6, 509–512. Examples of methanolysis: (a) Liang, J.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1998, 63, 3154–3155. (b) Tanaka, S.; Saburi, H.; Ishibashi, Y.; (6)Kitamura, M. Org. Lett. 2004, 6, 1873-1875.
- Watson, M. D.; Fechtenkotter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267-1300 and references therein.
- (8)Iwasawa, T.; Tokunaga, M.; Obora, Y.; Tsuji, Y. J. Am. Chem. Soc. 2004, 126.6554 - 6555
- Bosch, M.; Schlaf, M. J. Org. Chem. 2003, 68, 5225-5227. Aliphatic (9)alcohols were vinylated as reversible reaction, but phenol was not vinylated
- Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249-331. krel values (10)were calculated as a first-order reaction from both 1 and 2, then the lower value was taken. JA051750H